
CHAPTER 8
Linear Momentum and
Collisions

8.1 Linear Momentum and Force

• Define linear momentum.
• Explain the relationship between momentum and force.
• State Newton’s second law of motion in terms of momentum.
• Calculate momentum given mass and velocity.

Figure 8.1 Each rugby player has great momentum, which will affect the outcome of their collisions with each other
and the ground. (credit: ozzzie, Flickr)

Chapter Outline



INTRODUCTION TO LINEAR MOMENTUM AND COLLISIONS

8.2 Impulse

• Define impulse.
• Describe effects of impulses in everyday life.
• Determine the average effective force using graphical representation.
• Calculate average force and impulse given mass, velocity, and time.

8.3 Conservation of Momentum

• Describe the principle of conservation of momentum.
• Derive an expression for the conservation of momentum.
• Explain conservation of momentum with examples.
• Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

8.4 Elastic Collisions in One Dimension

• Describe an elastic collision of two objects in one dimension.
• Define internal kinetic energy.
• Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
• Determine the final velocities in an elastic collision given masses and initial velocities.

8.5 Inelastic Collisions in One Dimension

• Define inelastic collision.
• Explain perfectly inelastic collision.
• Apply an understanding of collisions to sports.
• Determine recoil velocity and loss in kinetic energy given mass and initial velocity.

8.6 Collisions of Point Masses in Two Dimensions

• Discuss two dimensional collisions as an extension of one dimensional analysis.
• Define point masses.
• Derive an expression for conservation of momentum along x-axis and y-axis.
• Describe elastic collisions of two objects with equal mass.
• Determine the magnitude and direction of the final velocity given initial velocity, and scattering angle.

8.7 Introduction to Rocket Propulsion

• State Newton’s third law of motion.
• Explain the principle involved in propulsion of rockets and jet engines.
• Derive an expression for the acceleration of the rocket and discuss the factors that affect the acceleration.
• Describe the function of a space shuttle.

We use the term momentum in various ways in everyday
language, and most of these ways are consistent with its precise scientific definition. We speak of sports teams or politicians
gaining and maintaining the momentum to win. We also recognize that momentum has something to do with collisions. For
example, looking at the rugby players in the photograph colliding and falling to the ground, we expect their momenta to have
great effects in the resulting collisions. Generally, momentum implies a tendency to continue on course—to move in the same
direction—and is associated with great mass and speed.

Momentum, like energy, is important because it is conserved. Only a few physical quantities are conserved in nature, and
studying them yields fundamental insight into how nature works, as we shall see in our study of momentum.

Click to view content (https://www.youtube.com/embed/hxMaoFcYSrw)

8.1 Linear Momentum and Force
Linear Momentum
The scientific definition of linear momentum is consistent with most people’s intuitive understanding of momentum: a large,
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fast-moving object has greater momentum than a smaller, slower object. Linear momentum is defined as the product of a
system’s mass multiplied by its velocity. In symbols, linear momentum is expressed as

Momentum is directly proportional to the object’s mass and also its velocity. Thus the greater an object’s mass or the greater its
velocity, the greater its momentum. Momentum is a vector having the same direction as the velocity . The SI unit for
momentum is .

EXAMPLE 8.1

Calculating Momentum: A Football Player and a Football
(a) Calculate the momentum of a 110-kg football player running at 8.00 m/s. (b) Compare the player’s momentum with the
momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s.

Strategy

No information is given regarding direction, and so we can calculate only the magnitude of the momentum, . (As usual, a
symbol that is in italics is a magnitude, whereas one that is italicized, boldfaced, and has an arrow is a vector.) In both parts of
this example, the magnitude of momentum can be calculated directly from the definition of momentum given in the equation,
which becomes

when only magnitudes are considered.

Solution for (a)

To determine the momentum of the player, substitute the known values for the player’s mass and speed into the equation.

Solution for (b)

To determine the momentum of the ball, substitute the known values for the ball’s mass and speed into the equation.

The ratio of the player’s momentum to that of the ball is

Discussion

Although the ball has greater velocity, the player has a much greater mass. Thus the momentum of the player is much greater
than the momentum of the football, as you might guess. As a result, the player’s motion is only slightly affected if he catches the
ball. We shall quantify what happens in such collisions in terms of momentum in later sections.

Momentum and Newton’s Second Law
The importance of momentum, unlike the importance of energy, was recognized early in the development of classical physics.
Momentum was deemed so important that it was called the “quantity of motion.” Newton actually stated his second law of
motion in terms of momentum: The net external force equals the change in momentum of a system divided by the time over
which it changes. Using symbols, this law is

8.1

Linear Momentum
Linear momentum is defined as the product of a system’s mass multiplied by its velocity:
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where is the net external force, is the change in momentum, and is the change in time.

This statement of Newton’s second law of motion includes the more familiar as a special case. We can derive this form
as follows. First, note that the change in momentum is given by

If the mass of the system is constant, then

So that for constant mass, Newton’s second law of motion becomes

Because , we get the familiar equation

when the mass of the system is constant.

Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems
where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying mass
in some detail; however, the relationship between momentum and force remains useful when mass is constant, such as in the
following example.

EXAMPLE 8.2

Calculating Force: Venus Williams’ Racquet
During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed of 58
m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet, assuming that the
ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is negligible, and that
the ball remained in contact with the racquet for 5.0 ms (milliseconds)?

Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before impact.
Newton’s second law stated in terms of momentum is then written as

8.7

Newton’s Second Law of Motion in Terms of Momentum
The net external force equals the change in momentum of a system divided by the time over which it changes.

8.8

Making Connections: Force and Momentum
Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of
motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept
in the study of atomic and subatomic particles in quantum mechanics.
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As noted above, when mass is constant, the change in momentum is given by

In this example, the velocity just after impact and the change in time are given; thus, once is calculated, can be
used to find the force.

Solution

To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.

Now the magnitude of the net external force can determined by using :

where we have retained only two significant figures in the final step.

Discussion

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that the
ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet). This problem could also be solved by
first finding the acceleration and then using , but one additional step would be required compared with the strategy
used in this example.

8.2 Impulse
The effect of a force on an object depends on how long it acts, as well as how great the force is. In Example 8.1, a very large force
acting for a short time had a great effect on the momentum of the tennis ball. A small force could cause the same change in
momentum, but it would have to act for a much longer time. For example, if the ball were thrown upward, the gravitational
force (which is much smaller than the tennis racquet’s force) would eventually reverse the momentum of the ball. Quantitatively,
the effect we are talking about is the change in momentum .

By rearranging the equation to be

we can see how the change in momentum equals the average net external force multiplied by the time this force acts. The
quantity is given the name impulse. Impulse is the same as the change in momentum.

8.14

8.15

8.16

8.17

Impulse: Change in Momentum
Change in momentum equals the average net external force multiplied by the time this force acts.

The quantity is given the name impulse.

There are many ways in which an understanding of impulse can save lives, or at least limbs. The dashboard padding in a car,
and certainly the airbags, allow the net force on the occupants in the car to act over a much longer time when there is a
sudden stop. The momentum change is the same for an occupant, whether an air bag is deployed or not, but the force (to
bring the occupant to a stop) will be much less if it acts over a larger time. Cars today have many plastic components. One
advantage of plastics is their lighter weight, which results in better gas mileage. Another advantage is that a car will
crumple in a collision, especially in the event of a head-on collision. A longer collision time means the force on the car will be
less. Deaths during car races decreased dramatically when the rigid frames of racing cars were replaced with parts that
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EXAMPLE 8.3

Calculating Magnitudes of Impulses: Two Billiard Balls Striking a Rigid Wall
Two identical billiard balls strike a rigid wall with the same speed, and are reflected without any change of speed. The first ball
strikes perpendicular to the wall. The second ball strikes the wall at an angle of from the perpendicular, and bounces off at
an angle of from perpendicular to the wall.

(a) Determine the direction of the force on the wall due to each ball.

(b) Calculate the ratio of the magnitudes of impulses on the two balls by the wall.

Strategy for (a)

In order to determine the force on the wall, consider the force on the ball due to the wall using Newton’s second law and then
apply Newton’s third law to determine the direction. Assume the -axis to be normal to the wall and to be positive in the initial
direction of motion. Choose the -axis to be along the wall in the plane of the second ball’s motion. The momentum direction
and the velocity direction are the same.

Solution for (a)

The first ball bounces directly into the wall and exerts a force on it in the direction. Therefore the wall exerts a force on the
ball in the direction. The second ball continues with the same momentum component in the direction, but reverses its
-component of momentum, as seen by sketching a diagram of the angles involved and keeping in mind the proportionality
between velocity and momentum.

These changes mean the change in momentum for both balls is in the direction, so the force of the wall on each ball is along
the direction.

Strategy for (b)

Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for (b)

Let be the speed of each ball before and after collision with the wall, and the mass of each ball. Choose the -axis and -axis
as previously described, and consider the change in momentum of the first ball which strikes perpendicular to the wall.

Impulse is the change in momentum vector. Therefore the -component of impulse is equal to and the -component of
impulse is equal to zero.

Now consider the change in momentum of the second ball.

It should be noted here that while changes sign after the collision, does not. Therefore the -component of impulse is
equal to and the -component of impulse is equal to zero.

The ratio of the magnitudes of the impulse imparted to the balls is

could crumple or collapse in the event of an accident.

Bones in a body will fracture if the force on them is too large. If you jump onto the floor from a table, the force on your legs
can be immense if you land stiff-legged on a hard surface. Rolling on the ground after jumping from the table, or landing
with a parachute, extends the time over which the force (on you from the ground) acts.
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Discussion

The direction of impulse and force is the same as in the case of (a); it is normal to the wall and along the negative -direction.
Making use of Newton’s third law, the force on the wall due to each ball is normal to the wall along the positive -direction.

Our definition of impulse includes an assumption that the force is constant over the time interval . Forces are usually not
constant. Forces vary considerably even during the brief time intervals considered. It is, however, possible to find an average
effective force that produces the same result as the corresponding time-varying force. Figure 8.2 shows a graph of what an
actual force looks like as a function of time for a ball bouncing off the floor. The area under the curve has units of momentum
and is equal to the impulse or change in momentum between times and . That area is equal to the area inside the rectangle
bounded by , , and . Thus the impulses and their effects are the same for both the actual and effective forces.

Figure 8.2 A graph of force versus time with time along the -axis and force along the -axis for an actual force and an equivalent effective

force. The areas under the two curves are equal.

8.3 Conservation of Momentum
Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear
Momentum and Force, where large changes in momentum were produced by forces acting on the system of interest. Under
what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which
total momentum is constant, even if momentum changes for components of the system. If a football player runs into the

8.23

Making Connections: Take-Home Investigation—Hand Movement and Impulse
Try catching a ball while “giving” with the ball, pulling your hands toward your body. Then, try catching a ball while keeping
your hands still. Hit water in a tub with your full palm. After the water has settled, hit the water again by diving your hand
with your fingers first into the water. (Your full palm represents a swimmer doing a belly flop and your diving hand
represents a swimmer doing a dive.) Explain what happens in each case and why. Which orientations would you advise
people to avoid and why?

Making Connections: Constant Force and Constant Acceleration
The assumption of a constant force in the definition of impulse is analogous to the assumption of a constant acceleration in
kinematics. In both cases, nature is adequately described without the use of calculus.
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goalpost in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils
—conserving momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude
more massive than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real
nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and
Earth—for example, one car bumping into another, as shown in Figure 8.3. Both cars are coasting in the same direction when
the lead car (labeled is bumped by the trailing car (labeled The only unbalanced force on each car is the force of the
collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some
momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car
system remains constant.

Figure 8.3 A car of mass moving with a velocity of bumps into another car of mass and velocity that it is following. As a result,

the first car slows down to a velocity of and the second speeds up to a velocity of . The momentum of each car is changed, but the

total momentum of the two cars is the same before and after the collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of car 1 is given by

where is the force on car 1 due to car 2, and is the time the force acts (the duration of the collision). Intuitively, it seems
obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This
assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is
conserved.

Similarly, the change in momentum of car 2 is

where is the force on car 2 due to car 1, and we assume the duration of the collision is the same for both cars. We know
from Newton’s third law that , and so

Thus, the changes in momentum are equal and opposite, and

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,
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where and are the momenta of cars 1 and 2 after the collision. (We often use primes to denote the final state.)

This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly
shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the
conservation of momentum principle for an isolated system is written

or

where is the total momentum (the sum of the momenta of the individual objects in the system) and is the total
momentum some time later. (The total momentum can be shown to be the momentum of the center of mass of the system.) An
isolated system is defined to be one for which the net external force is zero

Perhaps an easier way to see that momentum is conserved for an isolated system is to consider Newton’s second law in terms of

momentum, . For an isolated system, ; thus, , and is constant.

We have noted that the three length dimensions in nature— , , and —are independent, and it is interesting to note that
momentum can be conserved in different ways along each dimension. For example, during projectile motion and where air
resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero and momentum
is unchanged. But along the vertical direction, the net vertical force is not zero and the momentum of the projectile is not
conserved. (See Figure 8.4.) However, if the momentum of the projectile-Earth system is considered in the vertical direction, we
find that the total momentum is conserved.
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Conservation of Momentum Principle

8.32

Isolated System
An isolated system is defined to be one for which the net external force is zero
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Figure 8.4 The horizontal component of a projectile’s momentum is conserved if air resistance is negligible, even in this case where a space

probe separates. The forces causing the separation are internal to the system, so that the net external horizontal force is still zero.

The vertical component of the momentum is not conserved, because the net vertical force is not zero. In the vertical direction, the

space probe-Earth system needs to be considered and we find that the total momentum is conserved. The center of mass of the space

probe takes the same path it would if the separation did not occur.

The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing
huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But
another larger system can always be considered in which momentum is conserved by simply including the source of the external
force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car
system does not.

Making Connections: Take-Home Investigation—Drop of Tennis Ball and a Basketball
Hold a tennis ball side by side and in contact with a basketball. Drop the balls together. (Be careful!) What happens? Explain
your observations. Now hold the tennis ball above and in contact with the basketball. What happened? Explain your
observations. What do you think will happen if the basketball ball is held above and in contact with the tennis ball?

Making Connections: Take-Home Investigation—Two Tennis Balls in a Ballistic
Trajectory
Tie two tennis balls together with a string about a foot long. Hold one ball and let the other hang down and throw it in a
ballistic trajectory. Explain your observations. Now mark the center of the string with bright ink or attach a brightly colored
sticker to it and throw again. What happened? Explain your observations.

Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills
its umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet
of water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in
which they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the
heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the
rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This
measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This
technique can gather information on the strength of the heart beat and the volume of blood passing from the heart.
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Subatomic Collisions and Momentum
The conservation of momentum principle not only applies to the macroscopic objects, it is also essential to our explorations of
atomic and subatomic particles. Giant machines hurl subatomic particles at one another, and researchers evaluate the results by
assuming conservation of momentum (among other things).

On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our
instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a
property of all subatomic particles including massless particles such as photons that compose light. Momentum being a
property of particles hints that momentum may have an identity beyond the description of an object’s mass multiplied by the
object’s velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken
and how we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when
considering systems of particles. We use this principle to analyze the masses and other properties of previously undetected
particles, such as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure 8.5 below illustrates
how a particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence
that quarks make up protons (one type of particle that makes up nuclei) scattered high-energy electrons off of protons (nuclei of
hydrogen atoms). Electrons occasionally scattered straight backward in a manner that implied a very small and very dense
particle makes up the proton—this observation is considered nearly direct evidence of quarks. The analysis was based partly on
the same conservation of momentum principle that works so well on the large scale.

Figure 8.5 A subatomic particle scatters straight backward from a target particle. In experiments seeking evidence for quarks, electrons

were observed to occasionally scatter straight backward from a proton.

8.4 Elastic Collisions in One Dimension
Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the
physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used
whenever the net external force on a system is zero.

However, the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses
ultrasound to see an image of the heart) are more widely used in the practice of cardiology.

Making Connections: Conservation of Momentum and Collision
Conservation of momentum is quite useful in describing collisions. Momentum is crucial to our understanding of atomic
and subatomic particles because much of what we know about these particles comes from collision experiments.
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We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision is
one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the
system. Figure 8.6 illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions
can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat
transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another
nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly
frictionless, more readily allowing nearly elastic collisions on them.

Figure 8.6 An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for
conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for
two objects in a one-dimensional collision is

or

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so
the sum of kinetic energies before the collision equals the sum after the collision. Thus,

Elastic Collision
An elastic collision is one that conserves internal kinetic energy.

Internal Kinetic Energy
Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

8.33

8.34

324 Chapter 8 • Linear Momentum and Collisions

Access for free at openstax.org.



expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

EXAMPLE 8.4

Calculating Velocities Following an Elastic Collision
Calculate the velocities of two objects following an elastic collision, given that

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is
slightly simpler than the situation shown in Figure 8.6 where both objects are initially moving. We are asked to find two
unknowns (the final velocities and ). To find two unknowns, we must use two independent equations. Because this
collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and
thus . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that and use conservation of momentum. Thus,

or

Using conservation of internal kinetic energy and that ,

Solving the first equation (momentum equation) for , we obtain

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable , leaving only
as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this

example, they are

and

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this
case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and
is discarded. The second solution is negative, meaning that the first object bounces backward. When this
negative value of is used to find the velocity of the second object after the collision, we get

or

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger
one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at
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rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic
energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-
dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

PHET EXPLORATIONS

Collision Lab
Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial
conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Click to view content (https://phet.colorado.edu/sims/collision-lab/collision-lab_en.html)

Figure 8.7

8.5 Inelastic Collisions in One Dimension
We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal
kinetic energy changes (it is not conserved). This lack of conservation means that the forces between colliding objects may
remove or add internal kinetic energy. Work done by internal forces may change the forms of energy within a system. For
inelastic collisions, such as when colliding objects stick together, this internal work may transform some internal kinetic energy
into heat transfer. Or it may convert stored energy into internal kinetic energy, such as when exploding bolts separate a satellite
from its launch vehicle.

Figure 8.8 shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal
speeds and then stick together. Their total internal kinetic energy is initially . The two objects come to
rest after sticking together, conserving momentum. But the internal kinetic energy is zero after the collision. A collision in
which the objects stick together is sometimes called a perfectly inelastic collision because it reduces internal kinetic energy
more than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it
can have while still conserving momentum.

Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision
Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice
cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe
the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice
cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using
momentum.

Inelastic Collision
An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

Perfectly Inelastic Collision
A collision in which the objects stick together is sometimes called “perfectly inelastic.”
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Figure 8.8 An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two

objects of equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic

collision), and so their final velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to

zero in this example.

EXAMPLE 8.5

Calculating Velocity and Change in Kinetic Energy: Inelastic Collision of a Puck and a Goalie
(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at
a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-
goalie system is negligible. (See Figure 8.9 )

Figure 8.9 An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely

converted to thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of
momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that the
final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated before
and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

or
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Because the goalie is initially at rest, we know . Because the goalie catches the puck, the final velocities are equal, or
. Thus, the conservation of momentum equation simplifies to

Solving for yields

Entering known values in this equation, we get

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy of the system is that of the hockey puck, because the goalie is initially at
rest. Therefore, is initially

After the collision, the internal kinetic energy is

The change in internal kinetic energy is thus

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. is mostly converted to thermal
energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as happens in
most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a collision. Figure
8.10 shows a one-dimensional example in which two carts on an air track collide, releasing potential energy from a compressed
spring. Example 8.6 deals with data from such a collision.
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Figure 8.10 An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in

Example 8.6, the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let
us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet
will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a softball
bat) cannot hit a hardball very far.

The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the impact
occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries such as
tennis elbow. A tennis player tries to hit the ball on the “sweet spot” on the racquet, where the vibration and impact are
minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts such as
momentum and rotational motion and vibrations.

Take-Home Experiment—Bouncing of Tennis Ball
1. Find a racquet (a tennis, badminton, or other racquet will do). Place the racquet on the floor and stand on the handle.

Drop a tennis ball on the strings from a measured height. Measure how high the ball bounces. Now ask a friend to hold
the racquet firmly by the handle and drop a tennis ball from the same measured height above the racquet. Measure how
high the ball bounces and observe what happens to your friend’s hand during the collision. Explain your observations
and measurements.

2. The coefficient of restitution is a measure of the elasticity of a collision between a ball and an object, and is defined
as the ratio of the speeds after and before the collision. A perfectly elastic collision has a of 1. For a ball bouncing off
the floor (or a racquet on the floor), can be shown to be where is the height to which the ball bounces
and is the height from which the ball is dropped. Determine for the cases in Part 1 and for the case of a tennis ball
bouncing off a concrete or wooden floor ( for new tennis balls used on a tennis court).
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EXAMPLE 8.6

Calculating Final Velocity and Energy Release: Two Carts Collide
In the collision pictured in Figure 8.10, two carts collide inelastically. Cart 1 (denoted carries a spring which is initially
compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass of
cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of . Cart 2 (denoted in
Figure 8.10) has a mass of 0.500 kg and an initial velocity of . After the collision, cart 1 is observed to recoil with a
velocity of . (a) What is the final velocity of cart 2? (b) How much energy was released by the spring (assuming all of it
was converted into internal kinetic energy)?

Strategy

We can use conservation of momentum to find the final velocity of cart 2, because (the track is frictionless and the
force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and after the
collision to see how much energy was released by the spring.

Solution for (a)

As before, the equation for conservation of momentum in a two-object system is

The only unknown in this equation is . Solving for and substituting known values into the previous equation yields

Solution for (b)

The internal kinetic energy before the collision is

After the collision, the internal kinetic energy is

The change in internal kinetic energy is thus

Discussion

The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic
energy in this collision increases by 5.46 J. That energy was released by the spring.

8.6 Collisions of Point Masses in Two Dimensions
In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing
velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to
the side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis
already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to
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choose a convenient coordinate system and resolve the motion into components along perpendicular axes. Resolving the motion
yields a pair of one-dimensional problems to be solved simultaneously.

One complication arising in two-dimensional collisions is that the objects might rotate before or after their collision. For
example, if two ice skaters hook arms as they pass by one another, they will spin in circles. We will not consider such rotation
until later, and so for now we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of
point masses—that is, structureless particles that cannot rotate or spin.

We start by assuming that , so that momentum is conserved. The simplest collision is one in which one of the
particles is initially at rest. (See Figure 8.11.) The best choice for a coordinate system is one with an axis parallel to the velocity of
the incoming particle, as shown in Figure 8.11. Because momentum is conserved, the components of momentum along the -
and -axes will also be conserved, but with the chosen coordinate system, is initially zero and is the
momentum of the incoming particle. Both facts simplify the analysis. (Even with the simplifying assumptions of point masses,
one particle initially at rest, and a convenient coordinate system, we still gain new insights into nature from the analysis of two-
dimensional collisions.)

Figure 8.11 A two-dimensional collision with the coordinate system chosen so that is initially at rest and is parallel to the -axis. This

coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a target that is

stationary in the laboratory, while particles are scattered from it to determine the particles that make-up the target and how they are bound

together. The particles may not be observed directly, but their initial and final velocities are.

Along the -axis, the equation for conservation of momentum is

Where the subscripts denote the particles and axes and the primes denote the situation after the collision. In terms of masses
and velocities, this equation is

But because particle 2 is initially at rest, this equation becomes

The components of the velocities along the -axis have the form . Because particle 1 initially moves along the -axis, we
find .

Conservation of momentum along the -axis gives the following equation:

where and are as shown in Figure 8.11.
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Along the -axis, the equation for conservation of momentum is

or

But is zero, because particle 1 initially moves along the -axis. Because particle 2 is initially at rest, is also zero. The
equation for conservation of momentum along the -axis becomes

The components of the velocities along the -axis have the form .

Thus, conservation of momentum along the -axis gives the following equation:

The equations of conservation of momentum along the -axis and -axis are very useful in analyzing two-dimensional collisions
of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to find two
unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic level.

EXAMPLE 8.7

Determining the Final Velocity of an Unseen Object from the Scattering of Another Object
Suppose the following experiment is performed. A 0.250-kg object is slid on a frictionless surface into a dark room, where
it strikes an initially stationary object with mass of 0.400 kg . The 0.250-kg object emerges from the room at an angle of

with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and direction
of the velocity and of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in Figure 8.12 is one in which is
originally at rest and the initial velocity is parallel to the -axis, so that conservation of momentum along the - and -axes is
applicable.

Everything is known in these equations except and , which are precisely the quantities we wish to find. We can find two
unknowns because we have two independent equations: the equations describing the conservation of momentum in the - and

-directions.

Solution

Solving for and for and
taking the ratio yields an equation (in which θ2 is the only unknown quantity. Applying the identity , we obtain:

Conservation of Momentum along the -axis
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Entering known values into the previous equation gives

Thus,

Angles are defined as positive in the counter clockwise direction, so this angle indicates that is scattered to the right in
Figure 8.12, as expected (this angle is in the fourth quadrant). Either equation for the - or -axis can now be used to solve for

, but the latter equation is easiest because it has fewer terms.

Entering known values into this equation gives

Thus,

Discussion

It is instructive to calculate the internal kinetic energy of this two-object system before and after the collision. (This calculation
is left as an end-of-chapter problem.) If you do this calculation, you will find that the internal kinetic energy is less after the
collision, and so the collision is inelastic. This type of result makes a physicist want to explore the system further.

Figure 8.12 A collision taking place in a dark room is explored in Example 8.7. The incoming object is scattered by an initially stationary

object. Only the stationary object’s mass is known. By measuring the angle and speed at which emerges from the room, it is possible

to calculate the magnitude and direction of the initially stationary object’s velocity after the collision.

Elastic Collisions of Two Objects with Equal Mass
Some interesting situations arise when the two colliding objects have equal mass and the collision is elastic. This situation is
nearly the case with colliding billiard balls, and precisely the case with some subatomic particle collisions. We can thus get a
mental image of a collision of subatomic particles by thinking about billiards (or pool). (Refer to Figure 8.11 for masses and
angles.) First, an elastic collision conserves internal kinetic energy. Again, let us assume object 2 is initially at rest. Then,
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the internal kinetic energy before and after the collision of two objects that have equal masses is

Because the masses are equal, . Algebraic manipulation (left to the reader) of conservation of momentum in the
- and -directions can show that

(Remember that is negative here.) The two preceding equations can both be true only if

There are three ways that this term can be zero. They are

• : head-on collision; incoming ball stops
• : no collision; incoming ball continues unaffected
• : angle of separation is after the collision

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play
enough pool, you will notice that the angle between the balls is very close to after the collision, although it will vary from this
value if a great deal of spin is placed on the ball. (Large spin carries in extra energy and a quantity called angular momentum,
which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the
correctness of the three results it produces. This assumption also implies that, to a good approximation, momentum is
conserved for the two-ball system in billiards and pool. The problems below explore these and other characteristics of two-
dimensional collisions.

8.7 Introduction to Rocket Propulsion
Rockets range in size from fireworks so small that ordinary people use them to immense Saturn Vs that once propelled massive
payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses is
explained by the same physical principle—Newton’s third law of motion. Matter is forcefully ejected from a system, producing
an equal and opposite reaction on what remains. Another common example is the recoil of a gun. The gun exerts a force on a
bullet to accelerate it and consequently experiences an equal and opposite force, causing the gun’s recoil or kick.

Figure 8.13 shows a rocket accelerating straight up. In part (a), the rocket has a mass and a velocity relative to Earth, and
hence a momentum . In part (b), a time has elapsed in which the rocket has ejected a mass of hot gas at a velocity
relative to the rocket. The remainder of the mass now has a greater velocity . The momentum of the entire
system (rocket plus expelled gas) has actually decreased because the force of gravity has acted for a time , producing a
negative impulse . (Remember that impulse is the net external force on a system multiplied by the time it acts,
and it equals the change in momentum of the system.) So, the center of mass of the system is in free fall but, by rapidly expelling
mass, part of the system can accelerate upward. It is a commonly held misconception that the rocket exhaust pushes on the
ground. If we consider thrust; that is, the force exerted on the rocket by the exhaust gases, then a rocket’s thrust is greater in
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Connections to Nuclear and Particle Physics
Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in
Medical Applications of Nuclear Physics and Particle Physics. Ernest Rutherford, for example, discovered the nature of the
atomic nucleus from such experiments.

Making Connections: Take-Home Experiment—Propulsion of a Balloon
Hold a balloon and fill it with air. Then, let the balloon go. In which direction does the air come out of the balloon and in
which direction does the balloon get propelled? If you fill the balloon with water and then let the balloon go, does the
balloon’s direction change? Explain your answer.
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outer space than in the atmosphere or on the launch pad. In fact, gases are easier to expel into a vacuum.

By calculating the change in momentum for the entire system over , and equating this change to the impulse, the following
expression can be shown to be a good approximation for the acceleration of the rocket.

“The rocket” is that part of the system remaining after the gas is ejected, and is the acceleration due to gravity.

Figure 8.13 (a) This rocket has a mass and an upward velocity . The net external force on the system is , if air resistance is

neglected. (b) A time later the system has two main parts, the ejected gas and the remainder of the rocket. The reaction force on the

rocket is what overcomes the gravitational force and accelerates it upward.

A rocket’s acceleration depends on three major factors, consistent with the equation for acceleration of a rocket . First, the
greater the exhaust velocity of the gases relative to the rocket, , the greater the acceleration is. The practical limit for is
about for conventional (non-nuclear) hot-gas propulsion systems. The second factor is the rate at which mass is
ejected from the rocket. This is the factor in the equation. The quantity , with units of newtons, is called
"thrust.” The faster the rocket burns its fuel, the greater its thrust, and the greater its acceleration. The third factor is the mass
of the rocket. The smaller the mass is (all other factors being the same), the greater the acceleration. The rocket mass
decreases dramatically during flight because most of the rocket is fuel to begin with, so that acceleration increases continuously,

8.77

Acceleration of a Rocket
Acceleration of a rocket is

where is the acceleration of the rocket, is the exhaust velocity, is the mass of the rocket, is the mass of the
ejected gas, and is the time in which the gas is ejected.
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reaching a maximum just before the fuel is exhausted.

EXAMPLE 8.8

Calculating Acceleration: Initial Acceleration of a Moon Launch
A Saturn V’s mass at liftoff was , its fuel-burn rate was , and the exhaust velocity was

. Calculate its initial acceleration.

Strategy

This problem is a straightforward application of the expression for acceleration because is the unknown and all of the terms on
the right side of the equation are given.

Solution

Substituting the given values into the equation for acceleration yields

Discussion

This value is fairly small, even for an initial acceleration. The acceleration does increase steadily as the rocket burns fuel, because
decreases while and remain constant. Knowing this acceleration and the mass of the rocket, you can show that the

thrust of the engines was .

To achieve the high speeds needed to hop continents, obtain orbit, or escape Earth’s gravity altogether, the mass of the rocket
other than fuel must be as small as possible. It can be shown that, in the absence of air resistance and neglecting gravity, the
final velocity of a one-stage rocket initially at rest is

where is the natural logarithm of the ratio of the initial mass of the rocket to what is left after all of the
fuel is exhausted. (Note that is actually the change in velocity, so the equation can be used for any segment of the flight. If we
start from rest, the change in velocity equals the final velocity.) For example, let us calculate the mass ratio needed to escape
Earth’s gravity starting from rest, given that the escape velocity from Earth is about , and assuming an exhaust
velocity .

Solving for gives

Thus, the mass of the rocket is

Factors Affecting a Rocket’s Acceleration
• The greater the exhaust velocity of the gases relative to the rocket, the greater the acceleration.
• The faster the rocket burns its fuel, the greater its acceleration.
• The smaller the rocket’s mass (all other factors being the same), the greater the acceleration.
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This result means that only of the mass is left when the fuel is burnt, and of the initial mass was fuel. Expressed as
percentages, 98.9% of the rocket is fuel, while payload, engines, fuel tanks, and other components make up only 1.10%. Taking
air resistance and gravitational force into account, the mass remaining can only be about . It is difficult to build a
rocket in which the fuel has a mass 180 times everything else. The solution is multistage rockets. Each stage only needs to
achieve part of the final velocity and is discarded after it burns its fuel. The result is that each successive stage can have smaller
engines and more payload relative to its fuel. Once out of the atmosphere, the ratio of payload to fuel becomes more favorable,
too.

The space shuttle was an attempt at an economical vehicle with some reusable parts, such as the solid fuel boosters and the craft
itself. (See Figure 8.14) The shuttle’s need to be operated by humans, however, made it at least as costly for launching satellites as
expendable, unpiloted rockets. Ideally, the shuttle would only have been used when human activities were required for the
success of a mission, such as the repair of the Hubble space telescope. Rockets with satellites can also be launched from
airplanes. Using airplanes has the double advantage that the initial velocity is significantly above zero and a rocket can avoid
most of the atmosphere’s resistance.

Figure 8.14 The space shuttle had a number of reusable parts. Solid fuel boosters on either side were recovered and refueled after each

flight, and the entire orbiter returned to Earth for use in subsequent flights. The large liquid fuel tank was expended. The space shuttle was

a complex assemblage of technologies, employing both solid and liquid fuel and pioneering ceramic tiles as reentry heat shields. As a

result, it permitted multiple launches as opposed to single-use rockets. (credit: NASA)

PHET EXPLORATIONS

Lunar Lander
Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this
classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate,
and lunar gravity. The real lunar lander is very hard to control.

Click to view content (https://phet.colorado.edu/sims/lunar-lander/lunar-lander_en.html)

Figure 8.15
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GLOSSARY
change in momentum the difference between the final and

initial momentum; the mass times the change in velocity
conservation of momentum principle when the net

external force is zero, the total momentum of the system
is conserved or constant

elastic collision a collision that also conserves internal
kinetic energy

impulse the average net external force times the time it
acts; equal to the change in momentum

inelastic collision a collision in which internal kinetic
energy is not conserved

internal kinetic energy the sum of the kinetic energies of
the objects in a system

isolated system a system in which the net external force is
zero

linear momentum the product of mass and velocity
perfectly inelastic collision a collision in which the

colliding objects stick together
point masses structureless particles with no rotation or

spin
quark fundamental constituent of matter and an

elementary particle
second law of motion physical law that states that the net

external force equals the change in momentum of a
system divided by the time over which it changes

SECTION SUMMARY
8.1 Linear Momentum and Force

• Linear momentum (momentum for brevity) is defined
as the product of a system’s mass multiplied by its
velocity.

• In symbols, linear momentum is defined to be

where is the mass of the system and is its velocity.
• The SI unit for momentum is .
• Newton’s second law of motion in terms of momentum

states that the net external force equals the change in
momentum of a system divided by the time over which
it changes.

• In symbols, Newton’s second law of motion is defined to
be

is the net external force, is the change in
momentum, and is the change time.

8.2 Impulse
• Impulse, or change in momentum, equals the average

net external force multiplied by the time this force acts:

• Forces are usually not constant over a period of time.

8.3 Conservation of Momentum
• The conservation of momentum principle is written

or

is the initial total momentum and is the total
momentum some time later.

• An isolated system is defined to be one for which the net
external force is zero

• During projectile motion and where air resistance is
negligible, momentum is conserved in the horizontal

direction because horizontal forces are zero.
• Conservation of momentum applies only when the net

external force is zero.
• The conservation of momentum principle is valid when

considering systems of particles.

8.4 Elastic Collisions in One
Dimension

• An elastic collision is one that conserves internal kinetic
energy.

• Conservation of kinetic energy and momentum
together allow the final velocities to be calculated in
terms of initial velocities and masses in one
dimensional two-body collisions.

8.5 Inelastic Collisions in One
Dimension

• An inelastic collision is one in which the internal kinetic
energy changes (it is not conserved).

• A collision in which the objects stick together is
sometimes called perfectly inelastic because it reduces
internal kinetic energy more than does any other type of
inelastic collision.

• Sports science and technologies also use physics
concepts such as momentum and rotational motion and
vibrations.

8.6 Collisions of Point Masses in
Two Dimensions

• The approach to two-dimensional collisions is to choose
a convenient coordinate system and break the motion
into components along perpendicular axes. Choose a
coordinate system with the -axis parallel to the velocity
of the incoming particle.

• Two-dimensional collisions of point masses where mass
2 is initially at rest conserve momentum along the
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initial direction of mass 1 (the -axis), stated by
and along the

direction perpendicular to the initial direction (the
-axis) stated by .

• The internal kinetic before and after the collision of two
objects that have equal masses is

• Point masses are structureless particles that cannot
spin.

8.7 Introduction to Rocket
Propulsion

• Newton’s third law of motion states that to every action,

there is an equal and opposite reaction.
• Acceleration of a rocket is .
• A rocket’s acceleration depends on three main factors.

They are
1. The greater the exhaust velocity of the gases, the greater

the acceleration.
2. The faster the rocket burns its fuel, the greater its

acceleration.
3. The smaller the rocket's mass, the greater the

acceleration.

CONCEPTUAL QUESTIONS
8.1 Linear Momentum and Force
1. An object that has a small mass and an object that has a

large mass have the same momentum. Which object has
the largest kinetic energy?

2. An object that has a small mass and an object that has a
large mass have the same kinetic energy. Which mass has
the largest momentum?

3. Professional Application
Football coaches advise players to block, hit, and tackle
with their feet on the ground rather than by leaping
through the air. Using the concepts of momentum, work,
and energy, explain how a football player can be more
effective with his feet on the ground.

4. How can a small force impart the same momentum to an
object as a large force?

8.2 Impulse
5. Professional Application

Explain in terms of impulse how padding reduces forces
in a collision. State this in terms of a real example, such
as the advantages of a carpeted vs. tile floor for a day care
center.

6. While jumping on a trampoline, sometimes you land on
your back and other times on your feet. In which case can
you reach a greater height and why?

7. Professional Application
Tennis racquets have “sweet spots.” If the ball hits a sweet
spot then the player's arm is not jarred as much as it
would be otherwise. Explain why this is the case.

8.3 Conservation of Momentum
8. Professional Application

If you dive into water, you reach greater depths than if
you do a belly flop. Explain this difference in depth using
the concept of conservation of energy. Explain this
difference in depth using what you have learned in this
chapter.

9. Under what circumstances is momentum conserved?
10. Can momentum be conserved for a system if there are

external forces acting on the system? If so, under what
conditions? If not, why not?

11. Momentum for a system can be conserved in one
direction while not being conserved in another. What is
the angle between the directions? Give an example.

12. Professional Application
Explain in terms of momentum and Newton’s laws how
a car’s air resistance is due in part to the fact that it
pushes air in its direction of motion.

13. Can objects in a system have momentum while the
momentum of the system is zero? Explain your answer.

14. Must the total energy of a system be conserved
whenever its momentum is conserved? Explain why or
why not.

8.4 Elastic Collisions in One
Dimension
15. What is an elastic collision?

8.5 Inelastic Collisions in One
Dimension
16. What is an inelastic collision? What is a perfectly

inelastic collision?
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17. Mixed-pair ice skaters performing in a show are
standing motionless at arms length just before starting a
routine. They reach out, clasp hands, and pull
themselves together by only using their arms. Assuming
there is no friction between the blades of their skates
and the ice, what is their velocity after their bodies
meet?

18. A small pickup truck that has a camper shell slowly
coasts toward a red light with negligible friction. Two
dogs in the back of the truck are moving and making
various inelastic collisions with each other and the walls.
What is the effect of the dogs on the motion of the
center of mass of the system (truck plus entire load)?
What is their effect on the motion of the truck?

8.6 Collisions of Point Masses in
Two Dimensions
19. Figure 8.16 shows a cube at rest and a small object heading

toward it. (a) Describe the directions (angle ) at which the
small object can emerge after colliding elastically with the
cube. How does depend on , the so-called impact
parameter? Ignore any effects that might be due to rotation
after the collision, and assume that the cube is much more
massive than the small object. (b) Answer the same questions
if the small object instead collides with a massive sphere.

Figure 8.16 A small object approaches a collision with a much

more massive cube, after which its velocity has the direction .

The angles at which the small object can be scattered are

determined by the shape of the object it strikes and the impact

parameter .

8.7 Introduction to Rocket
Propulsion
20. Professional Application

Suppose a fireworks shell explodes, breaking into three
large pieces for which air resistance is negligible. How is
the motion of the center of mass affected by the
explosion? How would it be affected if the pieces
experienced significantly more air resistance than the
intact shell?

21. Professional Application
During a visit to the International Space Station, an
astronaut was positioned motionless in the center of the
station, out of reach of any solid object on which he
could exert a force. Suggest a method by which he could
move himself away from this position, and explain the
physics involved.

22. Professional Application
It is possible for the velocity of a rocket to be greater
than the exhaust velocity of the gases it ejects. When
that is the case, the gas velocity and gas momentum are
in the same direction as that of the rocket. How is the
rocket still able to obtain thrust by ejecting the gases?

PROBLEMS & EXERCISES
8.1 Linear Momentum and Force
1. (a) Calculate the momentum of a 2000-kg elephant

charging a hunter at a speed of . (b) Compare
the elephant’s momentum with the momentum of a
0.0400-kg tranquilizer dart fired at a speed of .
(c) What is the momentum of the 90.0-kg hunter running
at after missing the elephant?

2. (a) What is the mass of a large ship that has a momentum
of , when the ship is moving at a
speed of (b) Compare the ship’s momentum
to the momentum of a 1100-kg artillery shell fired at a
speed of .
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3. (a) At what speed would a airplane have
to fly to have a momentum of (the
same as the ship’s momentum in the problem above)? (b)
What is the plane’s momentum when it is taking off at a
speed of ? (c) If the ship is an aircraft carrier
that launches these airplanes with a catapult, discuss the
implications of your answer to (b) as it relates to recoil
effects of the catapult on the ship.

4. (a) What is the momentum of a garbage truck that is
and is moving at ? (b) At what

speed would an 8.00-kg trash can have the same
momentum as the truck?

5. A runaway train car that has a mass of 15,000 kg travels at
a speed of down a track. Compute the time
required for a force of 1500 N to bring the car to rest.

6. The mass of Earth is and its orbital
radius is an average of . Calculate its
linear momentum.

8.2 Impulse
7. A bullet is accelerated down the barrel of a gun by hot

gases produced in the combustion of gun powder. What
is the average force exerted on a 0.0300-kg bullet to
accelerate it to a speed of 600 m/s in a time of 2.00 ms
(milliseconds)?

8. Professional Application
A car moving at 10 m/s crashes into a tree and stops in
0.26 s. Calculate the force the seat belt exerts on a
passenger in the car to bring him to a halt. The mass of
the passenger is 70 kg.

9. A person slaps her leg with her hand, bringing her hand
to rest in 2.50 milliseconds from an initial speed of 4.00
m/s. (a) What is the average force exerted on the leg,
taking the effective mass of the hand and forearm to be
1.50 kg? (b) Would the force be any different if the woman
clapped her hands together at the same speed and
brought them to rest in the same time? Explain why or
why not.

10. Professional Application
A professional boxer hits his opponent with a 1000-N
horizontal blow that lasts for 0.150 s. (a) Calculate the
impulse imparted by this blow. (b) What is the
opponent’s final velocity, if his mass is 105 kg and he is
motionless in midair when struck near his center of
mass? (c) Calculate the recoil velocity of the opponent’s
10.0-kg head if hit in this manner, assuming the head
does not initially transfer significant momentum to the
boxer’s body. (d) Discuss the implications of your
answers for parts (b) and (c).

11. Professional Application
Suppose a child drives a bumper car head on into the
side rail, which exerts a force of 4000 N on the car for
0.200 s. (a) What impulse is imparted by this force? (b)
Find the final velocity of the bumper car if its initial
velocity was 2.80 m/s and the car plus driver have a mass
of 200 kg. You may neglect friction between the car and
floor.

12. Professional Application
One hazard of space travel is debris left by previous
missions. There are several thousand objects orbiting
Earth that are large enough to be detected by radar, but
there are far greater numbers of very small objects, such
as flakes of paint. Calculate the force exerted by a
0.100-mg chip of paint that strikes a spacecraft window
at a relative speed of , given the
collision lasts .

13. Professional Application
A 75.0-kg person is riding in a car moving at 20.0 m/s
when the car runs into a bridge abutment. (a) Calculate
the average force on the person if he is stopped by a
padded dashboard that compresses an average of 1.00
cm. (b) Calculate the average force on the person if he is
stopped by an air bag that compresses an average of 15.0
cm.

14. Professional Application
Military rifles have a mechanism for reducing the recoil
forces of the gun on the person firing it. An internal part
recoils over a relatively large distance and is stopped by
damping mechanisms in the gun. The larger distance
reduces the average force needed to stop the internal
part. (a) Calculate the recoil velocity of a 1.00-kg plunger
that directly interacts with a 0.0200-kg bullet fired at
600 m/s from the gun. (b) If this part is stopped over a
distance of 20.0 cm, what average force is exerted upon
it by the gun? (c) Compare this to the force exerted on
the gun if the bullet is accelerated to its velocity in 10.0
ms (milliseconds).

15. A cruise ship with a mass of strikes a
pier at a speed of 0.750 m/s. It comes to rest 6.00 m
later, damaging the ship, the pier, and the tugboat
captain’s finances. Calculate the average force exerted on
the pier using the concept of impulse. (Hint: First
calculate the time it took to bring the ship to rest.)

16. Calculate the final speed of a 110-kg rugby player who is
initially running at 8.00 m/s but collides head-on with a
padded goalpost and experiences a backward force of

for .
17. Water from a fire hose is directed horizontally against a

wall at a rate of 50.0 kg/s and a speed of 42.0 m/s.
Calculate the magnitude of the force exerted on the wall,
assuming the water’s horizontal momentum is reduced
to zero.
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18. A 0.450-kg hammer is moving horizontally at 7.00 m/s
when it strikes a nail and comes to rest after driving the
nail 1.00 cm into a board. (a) Calculate the duration of
the impact. (b) What was the average force exerted on
the nail?

19. Starting with the definitions of momentum and kinetic
energy, derive an equation for the kinetic energy of a
particle expressed as a function of its momentum.

20. A ball with an initial velocity of 10 m/s moves at an angle
above the -direction. The ball hits a vertical wall

and bounces off so that it is moving above the
-direction with the same speed. What is the impulse
delivered by the wall?

21. When serving a tennis ball, a player hits the ball when its
velocity is zero (at the highest point of a vertical toss).
The racquet exerts a force of 540 N on the ball for 5.00
ms, giving it a final velocity of 45.0 m/s. Using these
data, find the mass of the ball.

22. A punter drops a ball from rest vertically 1 meter down
onto his foot. The ball leaves the foot with a speed of 18
m/s at an angle above the horizontal. What is the
impulse delivered by the foot (magnitude and
direction)?

8.3 Conservation of Momentum
23. Professional Application

Train cars are coupled together by being bumped into
one another. Suppose two loaded train cars are moving
toward one another, the first having a mass of 150,000
kg and a velocity of 0.300 m/s, and the second having a
mass of 110,000 kg and a velocity of . (The
minus indicates direction of motion.) What is their final
velocity?

24. Suppose a clay model of a koala bear has a mass of 0.200
kg and slides on ice at a speed of 0.750 m/s. It runs into
another clay model, which is initially motionless and
has a mass of 0.350 kg. Both being soft clay, they
naturally stick together. What is their final velocity?

25. Professional Application
Consider the following question: A car moving at 10 m/s
crashes into a tree and stops in 0.26 s. Calculate the
force the seatbelt exerts on a passenger in the car to
bring him to a halt. The mass of the passenger is 70 kg.
Would the answer to this question be different if the car
with the 70-kg passenger had collided with a car that
has a mass equal to and is traveling in the opposite
direction and at the same speed? Explain your answer.

26. What is the velocity of a 900-kg car initially moving at
30.0 m/s, just after it hits a 150-kg deer initially running
at 12.0 m/s in the same direction? Assume the deer
remains on the car.

27. A 1.80-kg falcon catches a 0.650-kg dove from behind in
midair. What is their velocity after impact if the falcon’s
velocity is initially 28.0 m/s and the dove’s velocity is
7.00 m/s in the same direction?

8.4 Elastic Collisions in One
Dimension
28. Two identical objects (such as billiard balls) have a one-

dimensional collision in which one is initially
motionless. After the collision, the moving object is
stationary and the other moves with the same speed as
the other originally had. Show that both momentum
and kinetic energy are conserved.

29. Professional Application
Two piloted satellites approach one another at a relative
speed of 0.250 m/s, intending to dock. The first has a
mass of , and the second a mass of

. If the two satellites collide elastically
rather than dock, what is their final relative velocity?

30. A 70.0-kg ice hockey goalie, originally at rest, catches a
0.150-kg hockey puck slapped at him at a velocity of 35.0
m/s. Suppose the goalie and the ice puck have an elastic
collision and the puck is reflected back in the direction
from which it came. What would their final velocities be
in this case?

8.5 Inelastic Collisions in One
Dimension
31. A 0.240-kg billiard ball that is moving at 3.00 m/s strikes

the bumper of a pool table and bounces straight back at
2.40 m/s (80% of its original speed). The collision lasts
0.0150 s. (a) Calculate the average force exerted on the
ball by the bumper. (b) How much kinetic energy in
joules is lost during the collision? (c) What percent of the
original energy is left?

32. During an ice show, a 60.0-kg skater leaps into the air
and is caught by an initially stationary 75.0-kg skater. (a)
What is their final velocity assuming negligible friction
and that the 60.0-kg skater’s original horizontal velocity
is 4.00 m/s? (b) How much kinetic energy is lost?

33. Professional Application
Using mass and speed data from Example 8.1 and
assuming that the football player catches the ball with
his feet off the ground with both of them moving
horizontally, calculate: (a) the final velocity if the ball and
player are going in the same direction and (b) the loss of
kinetic energy in this case. (c) Repeat parts (a) and (b) for
the situation in which the ball and the player are going
in opposite directions. Might the loss of kinetic energy
be related to how much it hurts to catch the pass?
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34. A battleship that is and is originally at
rest fires a 1100-kg artillery shell horizontally with a
velocity of 575 m/s. (a) If the shell is fired straight aft
(toward the rear of the ship), there will be negligible
friction opposing the ship’s recoil. Calculate its recoil
velocity. (b) Calculate the increase in internal kinetic
energy (that is, for the ship and the shell). This energy is
less than the energy released by the gun
powder—significant heat transfer occurs.

35. Professional Application
Two piloted satellites approaching one another, at a
relative speed of 0.250 m/s, intending to dock. The first
has a mass of , and the second a mass of

. (a) Calculate the final velocity (after
docking) by using the frame of reference in which the
first satellite was originally at rest. (b) What is the loss of
kinetic energy in this inelastic collision? (c) Repeat both
parts by using the frame of reference in which the
second satellite was originally at rest. Explain why the
change in velocity is different in the two frames,
whereas the change in kinetic energy is the same in
both.

36. Professional Application
A 30,000-kg freight car is coasting at 0.850 m/s with
negligible friction under a hopper that dumps 110,000
kg of scrap metal into it. (a) What is the final velocity of
the loaded freight car? (b) How much kinetic energy is
lost?

37. Professional Application
Space probes may be separated from their launchers by
exploding bolts. (They bolt away from one another.)
Suppose a 4800-kg satellite uses this method to separate
from the 1500-kg remains of its launcher, and that 5000
J of kinetic energy is supplied to the two parts. What are
their subsequent velocities using the frame of reference
in which they were at rest before separation?

38. A 0.0250-kg bullet is accelerated from rest to a speed of
550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is
much worse if you hold the gun loosely a few
centimeters from your shoulder rather than holding it
tightly against your shoulder. (a) Calculate the recoil
velocity of the rifle if it is held loosely away from the
shoulder. (b) How much kinetic energy does the rifle
gain? (c) What is the recoil velocity if the rifle is held
tightly against the shoulder, making the effective mass
28.0 kg? (d) How much kinetic energy is transferred to
the rifle-shoulder combination? The pain is related to
the amount of kinetic energy, which is significantly less
in this latter situation. (e) Calculate the momentum of a
110-kg football player running at 8.00 m/s. Compare the
player’s momentum with the momentum of a hard-
thrown 0.410-kg football that has a speed of 25.0 m/s.
Discuss its relationship to this problem.

39. Professional Application
One of the waste products of a nuclear reactor is
plutonium-239 . This nucleus is radioactive and
decays by splitting into a helium-4 nucleus and a
uranium-235 nucleus , the latter of
which is also radioactive and will itself decay some time
later. The energy emitted in the plutonium decay is

and is entirely converted to kinetic
energy of the helium and uranium nuclei. The mass of
the helium nucleus is , while that of
the uranium is (note that the ratio of
the masses is 4 to 235). (a) Calculate the velocities of the
two nuclei, assuming the plutonium nucleus is
originally at rest. (b) How much kinetic energy does
each nucleus carry away? Note that the data given here
are accurate to three digits only.

40. Professional Application
The Moon’s craters are remnants of meteorite collisions.
Suppose a fairly large asteroid that has a mass of

(about a kilometer across) strikes the
Moon at a speed of 15.0 km/s. (a) At what speed does the
Moon recoil after the perfectly inelastic collision (the
mass of the Moon is ) ? (b) How much
kinetic energy is lost in the collision? Such an event may
have been observed by medieval English monks who
reported observing a red glow and subsequent haze
about the Moon. (c) In October 2009, NASA crashed a
rocket into the Moon, and analyzed the plume produced
by the impact. (Significant amounts of water were
detected.) Answer part (a) and (b) for this real-life
experiment. The mass of the rocket was 2000 kg and its
speed upon impact was 9000 km/h. How does the
plume produced alter these results?

41. Professional Application
Two football players collide head-on in midair while
trying to catch a thrown football. The first player is 95.0
kg and has an initial velocity of 6.00 m/s, while the
second player is 115 kg and has an initial velocity of –3.50
m/s. What is their velocity just after impact if they cling
together?

42. What is the speed of a garbage truck that is
and is initially moving at 25.0 m/s just

after it hits and adheres to a trash can that is 80.0 kg
and is initially at rest?

43. During a circus act, an elderly performer thrills the
crowd by catching a cannon ball shot at him. The cannon
ball has a mass of 10.0 kg and the horizontal component
of its velocity is 8.00 m/s when the 65.0-kg performer
catches it. If the performer is on nearly frictionless
roller skates, what is his recoil velocity?
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44. (a) During an ice skating performance, an initially
motionless 80.0-kg clown throws a fake barbell away.
The clown’s ice skates allow her to recoil frictionlessly. If
the clown recoils with a velocity of 0.500 m/s and the
barbell is thrown with a velocity of 10.0 m/s, what is the
mass of the barbell? (b) How much kinetic energy is
gained by this maneuver? (c) Where does the kinetic
energy come from?

8.6 Collisions of Point Masses in
Two Dimensions
45. Two identical pucks collide on an air hockey table. One

puck was originally at rest. (a) If the incoming puck has 
a speed of 6.00 m/s and scatters to an angle of
what is the velocity (magnitude and direction) of the 
second puck? (You may use the result that

for elastic collisions of objects that have 
identical masses.) (b) Confirm that the collision is 
elastic.

46. Confirm that the results of the example Example 8.7 do
conserve momentum in both the - and -directions.

47. A 3000-kg cannon is mounted so that it can recoil only
in the horizontal direction. (a) Calculate its recoil
velocity when it fires a 15.0-kg shell at 480 m/s at an
angle of above the horizontal. (b) What is the
kinetic energy of the cannon? This energy is dissipated
as heat transfer in shock absorbers that stop its recoil.
(c) What happens to the vertical component of
momentum that is imparted to the cannon when it is
fired?

48. Professional Application
A 5.50-kg bowling ball moving at 9.00 m/s collides with
a 0.850-kg bowling pin, which is scattered at an angle of

to the initial direction of the bowling ball and
with a speed of 15.0 m/s. (a) Calculate the final velocity
(magnitude and direction) of the bowling ball. (b) Is the
collision elastic? (c) Linear kinetic energy is greater after
the collision. Discuss how spin on the ball might be
converted to linear kinetic energy in the collision.

49. Professional Application
Ernest Rutherford (the first New Zealander to be
awarded the Nobel Prize in Chemistry) demonstrated
that nuclei were very small and dense by scattering
helium-4 nuclei from gold-197 nuclei .
The energy of the incoming helium nucleus was

, and the masses of the helium and gold
nuclei were and ,
respectively (note that their mass ratio is 4 to 197). (a) If
a helium nucleus scatters to an angle of during an
elastic collision with a gold nucleus, calculate the helium
nucleus’s final speed and the final velocity (magnitude
and direction) of the gold nucleus. (b) What is the final
kinetic energy of the helium nucleus?

50. Professional Application
Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1200 kg and is
approaching at due south. The second car has
a mass of 850 kg and is approaching at due
west. (a) Calculate the final velocity (magnitude and
direction) of the cars. (b) How much kinetic energy is
lost in the collision? (This energy goes into deformation
of the cars.) Note that because both cars have an initial
velocity, you cannot use the equations for conservation
of momentum along the -axis and -axis; instead, you
must look for other simplifying aspects.

51. Starting with equations
and

for conservation of
momentum in the - and -directions and assuming
that one object is originally stationary, prove that for an
elastic collision of two objects of equal masses,

as discussed in the text.
52. Integrated Concepts

A 90.0-kg ice hockey player hits a 0.150-kg puck, giving
the puck a velocity of 45.0 m/s. If both are initially at
rest and if the ice is frictionless, how far does the player
recoil in the time it takes the puck to reach the goal 15.0
m away?

8.7 Introduction to Rocket
Propulsion
53. Professional Application

Antiballistic missiles (ABMs) are designed to have very
large accelerations so that they may intercept fast-
moving incoming missiles in the short time available.
What is the takeoff acceleration of a 10,000-kg ABM that
expels 196 kg of gas per second at an exhaust velocity of

54. Professional Application
What is the acceleration of a 5000-kg rocket taking off
from the Moon, where the acceleration due to gravity is
only , if the rocket expels 8.00 kg of gas per
second at an exhaust velocity of

55. Professional Application
Calculate the increase in velocity of a 4000-kg space
probe that expels 3500 kg of its mass at an exhaust
velocity of . You may assume the
gravitational force is negligible at the probe’s location.

8.85
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56. Professional Application
Ion-propulsion rockets have been proposed for use in
space. They employ atomic ionization techniques and
nuclear energy sources to produce extremely high
exhaust velocities, perhaps as great as .
These techniques allow a much more favorable payload-
to-fuel ratio. To illustrate this fact: (a) Calculate the
increase in velocity of a 20,000-kg space probe that
expels only 40.0-kg of its mass at the given exhaust
velocity. (b) These engines are usually designed to
produce a very small thrust for a very long time—the
type of engine that might be useful on a trip to the outer
planets, for example. Calculate the acceleration of such
an engine if it expels at the given
velocity, assuming the acceleration due to gravity is
negligible.

57. Derive the equation for the vertical acceleration of a
rocket.

58. Professional Application
(a) Calculate the maximum rate at which a rocket can
expel gases if its acceleration cannot exceed seven times
that of gravity. The mass of the rocket just as it runs out
of fuel is 75,000-kg, and its exhaust velocity is

. Assume that the acceleration of
gravity is the same as on Earth’s surface .
(b) Why might it be necessary to limit the acceleration of
a rocket?

59. Given the following data for a fire extinguisher-toy
wagon rocket experiment, calculate the average exhaust
velocity of the gases expelled from the extinguisher.
Starting from rest, the final velocity is 10.0 m/s. The
total mass is initially 75.0 kg and is 70.0 kg after the
extinguisher is fired.

60. How much of a single-stage rocket that is 100,000 kg
can be anything but fuel if the rocket is to have a final
speed of , given that it expels gases at an
exhaust velocity of

61. Professional Application
(a) A 5.00-kg squid initially at rest ejects 0.250-kg of
fluid with a velocity of 10.0 m/s. What is the recoil
velocity of the squid if the ejection is done in 0.100 s and
there is a 5.00-N frictional force opposing the squid’s
movement. (b) How much energy is lost to work done
against friction?

62. Unreasonable Results
Squids have been reported to jump from the ocean and
travel (measured horizontally) before re-
entering the water. (a) Calculate the initial speed of the
squid if it leaves the water at an angle of ,
assuming negligible lift from the air and negligible air
resistance. (b) The squid propels itself by squirting
water. What fraction of its mass would it have to eject in
order to achieve the speed found in the previous part?
The water is ejected at ; gravitational force and
friction are neglected. (c) What is unreasonable about
the results? (d) Which premise is unreasonable, or
which premises are inconsistent?

63. Construct Your Own Problem
Consider an astronaut in deep space cut free from her
space ship and needing to get back to it. The astronaut
has a few packages that she can throw away to move
herself toward the ship. Construct a problem in which
you calculate the time it takes her to get back by
throwing all the packages at one time compared to
throwing them one at a time. Among the things to be
considered are the masses involved, the force she can
exert on the packages through some distance, and the
distance to the ship.

64. Construct Your Own Problem
Consider an artillery projectile striking armor plating.
Construct a problem in which you find the force exerted
by the projectile on the plate. Among the things to be
considered are the mass and speed of the projectile and
the distance over which its speed is reduced. Your
instructor may also wish for you to consider the relative
merits of depleted uranium versus lead projectiles based
on the greater density of uranium.
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